Synthesis of Ag3PO4/Ag/g-C3N4 Composite for Enhanced Photocatalytic Degradation of Methyl Orange

نویسندگان

چکیده

In this study, we have successfully constructed Ag3PO4/Ag/g-C3N4 heterojunctions via the hydrothermal method, which displays a wide photo-absorption range. The higher photocurrent intensity of indicates that separation efficiency photogenerated electron–hole pairs is than both Ag3PO4 and Ag/g-C3N4 pure substances. It confirmed efficient attributed to heterojunction material. Under visible light irradiation, Ag3PO4/Ag/g-C3N4-1.6 can remove MO (~90%) at rate or Ag/g-C3N4. Its degradation 0.04126 min−1, 4.23 6.53 times Ag3PO4, respectively. After five cycles testing, photocatalyst still maintained high photocatalytic activity. excellent photocatalysis under ultraviolet-visible due carriers brought about by construction heterostructure. Additionally, specimens be easily recycled with stability. effects hydroxyl superoxide radicals on process organic compounds were studied using electron paramagnetic resonance spectroscopy radical quenching experiments. Therefore, composite used as an recyclable UV-vis spectrum-driven for purification pollutants.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photocatalytic degradation of methyl orange using TiO2:Mg2+/zeolite composite under visible light irradiation

Photodegradation of methyl orange was investigated using synthesized TiO2:Mg2+/zeolite as the photocatalyst. The photocatalyst was characterized by X-ray, XRF, FT-IR, and SEM. The photocatalytic activities of TiO2:Mg2+/zeolite samples were evaluated in the degradation of methyl orange under visible light irradiation. The appropriate content of Mg in the composite was obtained as 4.711 wt% with ...

متن کامل

The Photocatalytic Kinetics of the Methyl Orange Degradation in the Aqueous Suspension of Irradiated TiO2

Background: In the present study, the photocatalytic (TiO2/UV) batch process has been used for the methyl orange (MO) degradation. Methods: In the catalyst range from 0.25 to 1.5 g/L, the optimum concentration of TiO2 was found to be 0.5 g/L. The kinetic behavior of MO degradation has been evaluated using the non-linear form of pseudo-first order and pseudo-second order models. Results: The g...

متن کامل

Photocatalytic degradation of methyl orange and Congo red using C,N,S-tridoped SnO2 nanoparticles

In this study, the photocatalytic degradation of methyl orange and Congo red dye was investigated inaqueous solution using C,N,S-tridoped SnO2 nanoparticles as a nano photocatalyst. The degradationwas carried out under different conditions including the photocatalyst amount, initial concentrationand pH of the solution. The results indicated that the degradation of methyl orange and Congo redwas...

متن کامل

Synthesis of Ag3PO4/G-C3N4 Composite with Enhanced Photocatalytic Performance for the Photodegradation of Diclofenac under Visible Light Irradiation

A new visible-light-driven heterojunction Ag3PO4/g-C3N4 was prepared by a simple deposition-precipitation method for the degradation analysis of diclofenac (DCF), a model drug component, under visible-light irradiation. The heterojunction photocatalysts were characterized by a suite of tools. The results revealed that the introduction of Ag3PO4 on the surface of g-C3N4 greatly promoted its stab...

متن کامل

Photocatalytic degradation of methyl orange using ZnO and Fe doped ZnO: A comparative study

ZnO and 2% Fe doped ZnO photocatalytic nanomaterials were successfully synthesized by successive ionic layer adsorption and the reaction (SILAR) method. The characterizations of these nanomaterials were carried out using XRD, SEM and EDX techniques. XRD study shows that the samples have a hexagonal wurtzite crystal structure, size of which is in the range 21-23 nm. SEM shows nanoflakes or nano ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Molecules

سال: 2023

ISSN: ['1420-3049']

DOI: https://doi.org/10.3390/molecules28166082